

Global sensitivity analysis based on entropy

Benjamin Auder, Bertrand looss

CEA Cadarache

France

Context: sensitivity analysis of complex physical phenomena simulation

Examples: simulation of nuclear power plant severe accident

Complex and coupled numerical models which require sensitivity analysis to:

- Identify the main sources of uncertainties
- Understand the relations between uncertain inputs and interest outputs

CADARACHE

Plan

- Classical sensitivity indices
- Entropy based sensitivity indices
 - Asymptotic properties and time complexity
- Analytic and industrial applications
- Conclusions and further prospects

Global sensitivity analysis (GSA)

CADXRACHE

•Opposed to local sensitivity analysis (LSA)

LSA studies the impact on the code output of a parameter variation around one value x_0 , typically using tools of differential calculus.

Can be used to specify a GSA, which estimate the impact of the parameters on their whole range of variation \rightarrow ranking input variables.

•GSA via variance-based indices (Sobol indices) Model y = f (x₁, ..., x_n) x₁, ..., x_n \rightarrow random variables \rightarrow Y = f (X₁, ..., X_n), random variable. $S_{i} = \frac{\operatorname{Var}(E[Y|X_{i}])}{\operatorname{Var}(Y)}$, $S_{T_{i}} = 1 - \frac{\operatorname{Var}(E[Y|X_{\sim_{i}}])}{\operatorname{Var}(Y)}$

Computation with Monte-Carlo or FAST method, ..., or analytical derivations with a metamodel, or if explicit simple code function.

Limitations of Sobol indices

- Variance based indices → only sensitive to average variations around a mean value, not much to the shape of the output distribution.
 - Some cases where a shape intuitively gives more information :

Geometrico-intuitive considerations → same variance for red and blue.
But intuition says blue gives more Information → Y more sensitive to blue because smaller range.

ΑСΗΕ

Example : Bimodal distributions

•Information = key word. Interesting measure in information theory : Entropy, with definitions (resp. continue and discrete) :

$$H(X) = -\int_{t \in D(X)} f(t) \ln(f(t)) dt \quad , \quad H(X) = -\sum_{i=1}^{''} P(x_i) \ln(P(x_i))$$

Plan

- Classical sensitivity indices
- \cdot Entropy based sensitivity indices
 - Asymptotic properties and time complexity
- Analytic and industrial applications
- Conclusions and further prospects

Entropy based indices : definition

•Aim at ranking inputs, as variance does, but in a different way.

•Based on the measure of entropy \rightarrow different properties than variance,

so at least interesting as complementary tool.

•*Idea* : As the entropy of the conditional distribution $Y|X_i$ increases, the *less* X_i affects the output Y, because entropy is :

- Maximal for uniform distribution
- Minimal for deterministic distribution

→ natural definition :
$$\eta_i = 1 - \frac{H(Y|X_i)}{H(Y)}$$
 (Krzykacz-Hausmann, 01)

Where $H(Y|X_i) = H(E[Y|X_i])$.

Advantages :

CADXRACHE

- Adequation with intuition
- > Easy to compute (linear in n for $x_1, ..., x_n$)

Entropy based indices : alternative definition

•Based on relative entropy or Kullback-Leibler distance between probability measures :

$$D(p:q) = \int_{x} p(x) \ln \frac{p(x)}{q(x)} dx$$

Definition by Liu & al., 06 :

$$KL_{i}(p_{1}|p_{0}) = \int_{-\infty}^{+\infty} p_{1}(y(x_{1},\ldots,\overline{x_{i}},\ldots,x_{n})) \ln \frac{p_{1}(y(x_{1},\ldots,\overline{x_{i}},\ldots,x_{n}))}{p_{0}(y(x_{1},\ldots,\overline{x_{i}},\ldots,\overline{x_{n}}))}$$

•With p_1 and p_0 respectively the probability distributions of the model output, depending if X_i become known or not, and $\overline{X_i} = E[X_i]$

•Measure the gap between those two probability distributions \Rightarrow KL_i(p₁|p₀) = global influence of X_i on the output distribution.

•Easy to interpret but should be integrated over all X_i values to be global \rightarrow LSA method.

•full study not completed

ACHE

Entropy based indices : computation

•Go back to η_i indices now.

CADXRACHE

•Subdivise U range in $I_1, ..., I_m$ partitioning intervals, and empirically

compute $p_1, ..., p_m$ probabilities that U be in $I_1, ..., I_m$ respectively.

•Problem : couple density estimations difficult if too few points.
 Note : formulation → easy to generalize to multi-dimensional output Y.

Entropy based indices : properties, limitations

•Convergence :

•Equipartition I₁, ..., I_m for the range of X_i : $H_m(X_i) \sim In(m)$ For a clear convergence of indices $\eta_i : n \ge m^2$ (n = number of sampling points)

•Drawbacks :

CADXRACHE

•Slow numerical convergence (logarithmic) due to the nature of entropy.

- •Logarithmic nature \rightarrow bad repartition of indices in [0,1]
- •Which entropy to choose ?

 If U and V are two random variables with the same compact support, and with almost same discrete entropy, they also have same continue entropy, and reversely → choose discrete form in the algorithms.

Plan

- Classical sensitivity indices
- Entropy based sensitivity indices
 - Asymptotic properties and time complexity
- Analytic and industrial applications
- Conclusions and further prospects

Ishigami function

•Classical benchmark in (global) sensitivity analysis.

•y :
$$\mathbb{R}^3 \rightarrow \mathbb{R}$$

ACHE

CAD

 $(x_1, x_2, x_3) = \sin(x_1) + a \sin^2(x_2) + b x_3^4 \sin(x_1)$

•Histogram of Y if X_1 , X_2 , X_3 uniform random variables on [-1,1] :

Bimodal distribution (here a=7 b=0.1)

One case where entropy could be interesting.

Variance also good because bimodality is not clearly marked.

Sensitivity indices for Ishigami function

•Indices S_i and S_{Ti} : (theoretical values)

ACHE

First order indices S _i	S ₁ = 0.32	S ₂ = 0.44	S ₃ = 0
Total indices	S _{T1} = 0.56	S _{T2} = 0.44	S _{τ3} = 0.24
S _{ti}	(45%)	(35%)	(19%)

•Value for third index : 0 for 1st order Sobol indices, >0 for entropy-based and total indices :

•First order do not take interactions into account, whereas entropy based indices compute a global impact of a parameter

 \rightarrow better compare to total indices S_{Ti} .

•Indices η_i (after convergence) : (34%) (45%)

 $\begin{array}{c|c} \eta_1 = 0.092 & \eta_2 = 0.12 & \eta_3 = 0.058 \\ \hline (34\%) & (45\%) & (21\%) \end{array}$

➔ Similar results for both methods

Kullback-Leibler based indices

•The results are quite different for the 3 sensitivity indices :

KL ₁ = 2.92	KL ₂ = 0.65	KL ₃ = 1.73
(55%)	(12%)	(33%)

CADAR

ACHE

•*Explanation* : the 3 histograms of conditional outputs $Y|X_i$ (=0)

•Visually, $Y|X_1$ most different from Y (reverse) and then $Y|X_3$ (too « uniform »).

Industrial case : LEONAR physical code

•32 inputs parameters : too many \rightarrow first Morris screening to select the 6 most important variables, renamed from X₁ to X₆.

•Y : fast decreasing with heavy tail.

ACHE

CADXR

→ Interesting to compare variance and entropy in this case.

LEONAR sensitivity indices

•As expected, the results are different from entropy to variance-based :

	Y - SA	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆
œ	S _{Ti}	0.82	0.04	0.39	0.03	0.02	0.35
	η _i	0.24	0.13	0.14	0.13	0.13	0.33

Y: corium mass in the vessel bottom X_1 : water arrival time in the reactor pit X_3 : water flow rate in the pit

ACHE

•In blue : logical high values shared for the two methods.

 In red : entropy-based method does not give as much importance to the variable than the Sobol indice → the corresponding input does
 not control much the distribution tail, but affects output variablility.

•*Number of sampling points* **≈10**⁵ for both methods.

Conclusions and further prospects

•*Entropy* = new point of view, complementary information added to

Positive aspects :

- > entropy naturally deals with **multi-output sensitivity analysis**.
- Deterministic sampling for entropy based indices allows fast enough calculation to get precise indices.

...Negative :

ACHE

- Choosing the right discretisation step for input and output variables, conditioning the (slow) convergence speed.
- \succ Slow convergence \rightarrow greedey in sampling points ; solutions :
 - Metamodel to fasten the computer code
 - R & D to develop efficient algorithms

•*Next* : Do more tests to estimate the efficiency of the new indices depending on the number of simulations run.

Thanks for your attention,

Any questions ?

