Apprentissage d'une variété fonctionnelle, Application au clustering de courbes

Benjamin Auder

CEA - UPMC

2 septembre 2009

Thèse depuis 02/2008

Directeur de thèse : Gérard Biau (UPMC) Encadrant CEA : Bertrand Iooss (CEA)

Introduction

2 Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

3) Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Contexte industriel CEA

Choc thermique pressurisé

Code thermo-hydraulique coûteux en temps, déterminant les évolutions temporelles de paramètres physiques dans l'espace annulaire de la cuve.

Code de calcul Cathare :

- Entrées $z \in \mathbb{R}^p$ = état initial du système physique;
- Sorties $y \in \mathcal{C}([a, b], \mathbb{R}) =$ évolution des paramètres du système.

Benjamin Auder (CEA - UPMC) Représentation de Données Fonctionnelles

Résultats attendus

Code de calcul entrées vectorielles et sorties fonctionnelles.

$$\begin{pmatrix} z_{11} & \dots & z_{1p} \\ \vdots & \vdots & \vdots \\ z_{n1} & \dots & z_{np} \end{pmatrix} \longrightarrow \begin{pmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{pmatrix} = \begin{pmatrix} y_1(t_1) & \dots & y_1(t_D) \\ \vdots & \vdots & \vdots \\ y_n(t_1) & \dots & y_n(t_D) \end{pmatrix}$$

i=1..N, $N\simeq 100\ 1000$; $z_{ij}\in\mathbb{R}$, $t\in[a,b]$.

Objectif : prédiction de données fonctionnelles via un métamodèle :

$$y^{\mathsf{new}} \simeq \varphi(z^{\mathsf{new}})$$
.

Résultats attendus

Code de calcul entrées vectorielles et sorties fonctionnelles.

$$\begin{pmatrix} z_{11} & \dots & z_{1p} \\ \vdots & \vdots & \vdots \\ z_{n1} & \dots & z_{np} \end{pmatrix} \longrightarrow \begin{pmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{pmatrix} = \begin{pmatrix} y_1(t_1) & \dots & y_1(t_D) \\ \vdots & \vdots & \vdots \\ y_n(t_1) & \dots & y_n(t_D) \end{pmatrix}$$

i=1..N, $N\simeq 100\ 1000$; $z_{ij}\in\mathbb{R}$, $t\in[a,b]$.

Objectif : prédiction de données fonctionnelles via un métamodèle :

$$y^{\mathsf{new}} \simeq \varphi(z^{\mathsf{new}})$$
.

Sous-objectifs

- \rightarrow Réduction de la dimension en sortie.
- \rightarrow Clustering des entrées / sorties.

Introduction

2 Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

3) Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Illustration

Données "non linéaires", mais structurées en une variété (au moins) C^0 .

FIG.: Surface de dimension deux dans \mathbb{R}^3 .

But : trouver un système de coordonnées le plus réduit possible pour décrire efficacement les données.

Benjamin Auder (CEA - UPMC) Représentation de Données Fonctionnelles

Objectifs

Paramétrer \mathcal{Y} , ensemble des sorties du code : $f(x \in \mathbb{R}^d) = y \in \mathcal{Y} \subset \mathcal{C}([a, b], \mathbb{R}), d$ le plus petit possible. En pratique : N échantillons $y_i \Rightarrow N$ vecteurs $x_i = f^{-1}(y_i)$ à déterminer.

Objectifs

Paramétrer \mathcal{Y} , ensemble des sorties du code : $f(x \in \mathbb{R}^d) = y \in \mathcal{Y} \subset \mathcal{C}([a, b], \mathbb{R}), d$ le plus petit possible. En pratique : N échantillons $y_i \Rightarrow N$ vecteurs $x_i = f^{-1}(y_i)$ à déterminer.

Contraintes :

• conservation des voisinages :

les voisins de x_i correspondent à ceux de $y_i = f(x_i)$ ($k \in \mathbb{N}^*$);

• conservation des distances :

$$f(x_i) = y_i$$
 et $f(x_j) = y_j \Rightarrow ||x_i - x_j|| \simeq ||y_i - y_j||$ (..etc)

FIG.: carte 2D du jeu de données swissroll

Méthode

Recherche de la vraie dimension \Rightarrow représentation non linéaire, distances euclidiennes \leftarrow distances géodésiques.

- Istimation de la géométrie locale : graphe de voisinage.
- **2** Estimation de la dimension : basée sur $\mathbb{P}(Y \in B(y, r)) \propto r^d$.
- 8 Représentation en coordonnées globales.

Méthode

Recherche de la vraie dimension \Rightarrow représentation non linéaire, distances euclidiennes \leftarrow distances géodésiques.

- Istimation de la géométrie locale : graphe de voisinage.
- **2** Estimation de la dimension : basée sur $\mathbb{P}(Y \in B(y, r)) \propto r^d$.
- Seprésentation en coordonnées globales.

FIG.: Exemple : un graphe des 6 plus proches voisins.

Détermination des voisinages

Méthode utilisée par T. Lin & H. Zha (articles 2006 et 2008).

Définition : visibilité depuis un noeud

v est voisin de p si aucun autre point r ne vérifie à la fois

$$\|r-p\| < \|v-p\|$$
 et $\langle p-r, v-r
angle < 0.$

bleu : points testés et acceptés rouge : points testés et refusés

FIG.: Exemple : voisinage du sommet entouré en vert.

Introduction

2 Réduction de la dimension

Isomap

- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Description (J. B. Tenenbaum et al., 2000)

Étape 1 : estimer toutes les distances géodésiques $d_{ij} = d(y_i, y_j)$.

Théorème

 $D = (d_{ij})_{i,j=1..n}$ est une matrice de distances euclidiennes ssi.

 $B = -\frac{1}{2}HDH$ est semi définie positive, avec $H = I - \frac{1}{n}\mathbb{1}^{t}\mathbb{1}$.

Dans ce cas *B* est la matrice de Gram associée à x_1, \ldots, x_n centrés, représentant les y_i .

11 / 30

Description (J. B. Tenenbaum et al., 2000)

Étape 1 : estimer toutes les distances géodésiques $d_{ij} = d(y_i, y_j)$.

Théorème

 $D = (d_{ij})_{i,j=1..n}$ est une matrice de distances euclidiennes ssi. $B = -\frac{1}{2}HDH$ est semi définie positive, avec $H = I - \frac{1}{n}\mathbb{1}^{t}\mathbb{1}$. Dans ce cas B est la matrice de Gram associée à x_1, \ldots, x_n centrés, représentant les y_i .

Étape 2 : rendre *B* semi définie positive en annulant ses valeurs propres négatives :

 $B\simeq U\Lambda_+{}^t U$.

Description (J. B. Tenenbaum et al., 2000)

Étape 1 : estimer toutes les distances géodésiques $d_{ij} = d(y_i, y_j)$.

Théorème

 $D = (d_{ij})_{i,j=1..n}$ est une matrice de distances euclidiennes ssi. $B = -\frac{1}{2}HDH$ est semi définie positive, avec $H = I - \frac{1}{n}\mathbb{1}^{t}\mathbb{1}$. Dans ce cas B est la matrice de Gram associée à x_1, \ldots, x_n centrés, représentant les y_i .

Étape 2 : rendre *B* semi définie positive en annulant ses valeurs propres négatives :

$$B\simeq U\Lambda_+{}^t U$$
 .

Étape 3 : calculer les nouvelles coordonnées x; en se limitant à d colonnes :

$$X=U\Lambda_{+}^{\frac{1}{2}}.$$

Propriétés

Sous les conditions 1 à 3, lsomap converge vers la paramétrisation optimale des n points en d dimensions :

- ${\small {\small 0}} \ \ \, {\rm la \ variéte} \ \, {\cal Y} \ {\rm est \ isométrique \ } {\rm a \ un \ sous-ensemble \ de \ \, } R^D, \ D\in \mathbb{N}^*\,;$
- 2 l'espace de paramétrisation de $\mathcal Y$ est convexe;
- \bigcirc \mathcal{Y} est compacte et bien échantillonnée partout.

Bilan

Conditions 1 et 2 très restrictives, souvent non vérifiées en pratique, mais l'algorithme reste utilisable et peut donner de bons résultats sans 1 et 2.

Propriétés

Sous les conditions 1 à 3, lsomap converge vers la paramétrisation optimale des n points en d dimensions :

- ${\small {\small 0}} \ \ \, {\rm la \ variéte} \ \, {\cal Y} \ {\rm est \ isométrique \ } {\rm a \ un \ sous-ensemble \ de \ \, } R^D, \ D\in \mathbb{N}^*\,;$
- 2 l'espace de paramétrisation de $\mathcal Y$ est convexe;
- \bigcirc \mathcal{Y} est compacte et bien échantillonnée partout.

Bilan

Conditions 1 et 2 très restrictives, souvent non vérifiées en pratique, mais l'algorithme reste utilisable et peut donner de bons résultats sans 1 et 2.

Exemple : hélice 3D.

Benjamin Auder (CEA - UPMC) Représentation de Données Fonctionnelles

Introduction

Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Description (M. Belkin & P. Niyogi, 2002) $W_{ij} = \text{similarité entre } y_i \text{ et } y_j, \text{ p. ex. } W_{ij} = e^{-\frac{||y_i - y_j||^2}{\sigma^2}}.$

Définitions

- D = matrice diagonale des degrés avec $D_{ii} = \sum_{i \in V(i)} W_{ij}$.
- L = D W, laplacien du graphe.

Description (M. Belkin & P. Niyogi, 2002) $W_{ij} = \text{similarité entre } y_i \text{ et } y_j, \text{ p. ex. } W_{ij} = e^{-\frac{||y_i - y_j||^2}{\sigma^2}}.$

Définitions

D = matrice diagonale des degrés avec $D_{ii} = \sum_{j \in V(i)} W_{ij}$. L = D - W, laplacien du graphe.

Fonction objectif naturelle à minimiser :

$$\psi(X) = \sum_{i,j=1}^{n} W_{ij} \|x_i - x_j\|^2,$$

sous la contrainte ${}^tXDX = 1$, avec $x_i \in \mathbb{R}^d$, en lignes dans X.

 \Rightarrow deux éléments similaires doivent être proches.

Solution au problème de minimisation :

X = d premiers vecteurs propres de $D^{-1}L$ en colonnes.

Choix de σ .

 σ déterminé localement en y_0 , maximisant l'écart de similarité entre le voisin v_1 (resp. v_k) le plus proche (resp. le plus éloigné) de y_0 :

$$\sigma^{2} = \arg \max_{\sigma^{2}} \left\{ e^{\frac{-\|y_{0}-v_{1}\|^{2}}{\sigma^{2}}} - e^{\frac{-\|y_{0}-v_{k}\|^{2}}{\sigma^{2}}} \right\}$$

Après calculs :

$$\sigma^{2} = \frac{\|y_{0} - v_{k}\|^{2} - \|y_{0} - v_{1}\|^{2}}{\ln \|y_{0} - v_{k}\|^{2} - \ln \|y_{0} - v_{1}\|^{2}}$$

Choix de σ .

 σ déterminé localement en y_0 , maximisant l'écart de similarité entre le voisin v_1 (resp. v_k) le plus proche (resp. le plus éloigné) de y_0 :

$$\sigma^{2} = \arg \max_{\sigma^{2}} \left\{ e^{\frac{-\|y_{0}-v_{1}\|^{2}}{\sigma^{2}}} - e^{\frac{-\|y_{0}-v_{k}\|^{2}}{\sigma^{2}}} \right\} \,.$$

Après calculs :

$$\sigma^{2} = \frac{\|y_{0} - v_{k}\|^{2} - \|y_{0} - v_{1}\|^{2}}{\ln \|y_{0} - v_{k}\|^{2} - \ln \|y_{0} - v_{1}\|^{2}}$$

Exemple : hélice 3D.

Introduction

Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Description (T. Lin & H. Zha, 2006)

Tentative d'unifier des propriétés de distances globales, en respectant aussi les voisinages.

Premières étapes :

- choisir un point origine y_0 parmi les y_i , (p.ex. le centre);
- déterminer une base locale Q₀ = (e₁,..., e_d) de l'espace tangent en y₀ (avec les points du voisinage + SVD);

17 / 30

Description (T. Lin & H. Zha, 2006)

Tentative d'unifier des propriétés de distances globales, en respectant aussi les voisinages.

Premières étapes :

- choisir un point origine y_0 parmi les y_i , (p.ex. le centre);
- déterminer une base locale Q₀ = (e₁,..., e_d) de l'espace tangent en y₀ (avec les points du voisinage + SVD);
- Second calculer les coordonnées de tous les voisins de y₀ en projection sur la base Q₀; un voisin y a pour coordonnées

$$x = \arg\min_{x_1,\dots,x_d} \left\| y - \left(y_0 + \sum_{i=1}^d x_i e_i \right) \right\|^2,$$

renormalisées pour vérifier $||y - y_0|| = ||x - x_0||$.

Coordonnées des non voisins de y₀

Étape 4 : pour y non voisin de y_0 , on cherche y_p le prédecesseur de y sur un plus court chemin issu de y_0 (Dijkstra p.ex.).

 y_{i_1}, \ldots, y_{i_d} sont les voisins déjà traités de y_p (parcours des y_i en largeur). \rightarrow On cherche alors x coordonnées de y, telles que les angles $\widehat{yy_py_{i_j}}$ soient \simeq conservés :

$$\cos\theta = \frac{\langle \mathbf{y} - \mathbf{y}_{\mathbf{p}}, \mathbf{y}_{i_j} - \mathbf{y}_{\mathbf{p}} \rangle}{\|\mathbf{y} - \mathbf{y}_{\mathbf{p}}\| \|\mathbf{y}_{i_j} - \mathbf{y}_{\mathbf{p}}\|} \simeq \frac{\langle \mathbf{x} - \mathbf{x}_{\mathbf{p}}, \mathbf{x}_{i_j} - \mathbf{x}_{\mathbf{p}} \rangle}{\|\mathbf{x} - \mathbf{x}_{\mathbf{p}}\| \|\mathbf{x}_{i_j} - \mathbf{x}_{\mathbf{p}}\|} = \cos\theta',$$

sous la contrainte $||y - y_p|| = ||x - x_p||$.

Benjamin Auder (CEA - UPMC) Représentation de Données Fonctionnelles

Introduction

2 Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

Somme de sinusoïdes

- Oscillations amorties
- Control Chart Time series

Exemple analytique, 2 clusters (dimension 2)

Pour tous les exemples, d = 2, N = 600. Pour les deux premiers, ajout d'un léger bruit gaussien.

Fonction définie sur $[0,2\pi]$:

 $f_{\alpha,\beta,\gamma,\delta}: x \to \alpha \cos x + \beta \sin x + \gamma \cos 2x + \delta \sin 2x$,

avec $(\alpha, \beta) \sim \mathcal{U}(\mathcal{S}(0, 1)_+)$. $(\gamma, \delta) \sim \mathcal{U}(\mathcal{S}(0, 1)_+)$ pour les courbes 1 à 300, puis $(\gamma, \delta) \sim \mathcal{U}(\mathcal{S}(0, 2)_+)$ pour les 300 suivantes $(\mathcal{S}_+ = \mathcal{S} \cap \mathbb{R}^2_+)$.

Résultats

FIG.: Laplacian eigenmaps.

Méthode	Réussite
K-Means	51%
Hiérarchique Ward	51%
Clustering spectral	100%
Isomap + k-means	99%
Lap. eig. $+$ k-means	100%
RML + k-means	97%

FIG.: Homogénéité des clusters.

Benjamin Auder (CEA - UPMC)

10

FIG.: RML.

16

8

Introduction

2 Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Exemple analytique, 3 clusters (dimension 1) Fonction définie sur [1, 5] :

$$\begin{split} & f_{\alpha,\beta,\gamma}: x \to \left(\frac{\sin \alpha x}{x} + e^{-\beta x}\right) \cos \gamma x \,; \\ & \beta [1:200,] \sim \mathcal{U}(1,2), \; \beta [201:400,] \sim \mathcal{U}(0,1), \; \beta [401:600,] \sim \mathcal{U}(0.4,1). \\ & \alpha = 3\beta, \; \text{et} \; \gamma [1:200,] = (4 - \beta [1:200,]^2)^{\frac{1}{2}}, \\ & \gamma [201:400,] = (1 - \beta [201:400,]^2)^{\frac{1}{2}}, \\ & \gamma [401:600,] = 3(1 - \beta [401:600,]^2)^{\frac{1}{2}} + 3. \end{split}$$

Benjamin Auder (CEA - UPMC)

Représentation de Données Fonctionnelle

Résultats

Méthode	Réussite
K-Means	67%
Hiérarchique Ward	74%
Clustering spectral	98%
Isomap + k-means	90%
Lap. eig. $+$ k-means	91%
$RML + k ext{-means}$	67%

FIG.: Homogénéité des clusters.

Benjamin Auder (CEA - UPMC)

Introduction

Réduction de la dimension

- Isomap
- Laplacian eigenmaps
- Riemaniann Manifold Learning (RML)

Tests

- Somme de sinusoïdes
- Oscillations amorties
- Control Chart Time series

Exemple analytique, 6 clusters (dimension ∞)

Séries temporelles affichant les évolutions de variables physiques. Fonction définie sur [0, 60], D points de discrétisation. Génération :

- cpt. normal : y(t) = m + rs; m = 30, s = 2, $r \sim U(-3,3)$ (noir);
- cpt. cyclique : $y(t) = m + rs + a \sin \frac{2\pi t}{T}$ où $a, T \sim \mathcal{U}(10, 15)$ (rouge);
- $(d\acute{e})$ croissant : $y(t) = m + rs \pm gt$; $g \sim \mathcal{U}(0.2, 0.5)$ (vert, bleu);
- saut haut/bas : $y(t) = m + rs \pm kx$; $x \sim \mathcal{U}(7.5, 20)$, $k = \mathbb{1}_{[t_0,D]}$. $t_0 \sim \mathcal{U}\left(\frac{D}{3}, \frac{2D}{3}\right)$ (bleu ciel, violet);

26 / 30

Benjamin Auder (CEA - UPMC) Représentation de Données Fonctionnelles 2 septembre 2009

Résultats

FIG.: Laplacian eigenmaps.

Réussite
91%
96%
94%
86%
80%
58%

FIG.: Homogénéité des clusters.

Note : isomap et $d = 4 \Rightarrow 92\%$, RML et $d = 8 \Rightarrow 75\%$

Benjamin Auder (CEA - UPMC)

Exemple sur données réelles

Code Cathare (CEA) : évolution du coefficient d'échange fluide-paroi.

Benjamin Auder (CEA - UPMC)

Représentation de Données Fonctionnelle

Conclusion

- Isomap : très bons résultats (mais pas conçu pour cette tâche..).
- Laplacian eigenmaps : beaucoup plus orienté vers le clustering, comparable à lsomap en performance.

Algorithme RML à améliorer / mieux adapter au cadre fonctionnel. Version actuelle : trop de chevauchements inter-classes.

Conclusion

- Isomap : très bons résultats (mais pas conçu pour cette tâche..).
- Laplacian eigenmaps : beaucoup plus orienté vers le clustering, comparable à lsomap en performance.

Algorithme RML à améliorer / mieux adapter au cadre fonctionnel. Version actuelle : trop de chevauchements inter-classes.

Méthode "intermédiaire" à explorer : courbes principales (T. Hastie, 1984).

FIG.: Exemple de surface principale en 2D.

...dans un espace de fonctions.

Benjamin Auder (CEA - UPMC) Représentation de Données

Bibliographie

Isomap : A global geometric framework for nonlinear dimensionality reduction; J. B. Tenenbaum, V. de Silva & J. C. Langford (2000). in Science, vol. 290, pp. 2319-2323.

Lap. eig. : Laplacian eigenmaps and spectral techniques for embedding and clustering ; M. Belkin & P. Niyogi (2002).

RML : Riemannian Manifold Learning for Nonlinear Dimensionality Reduction; T. Lin, H. Zha & S. U. Lee (2006), et Riemannian Manifold Learning; T. Lin & H. Zha (2008) in IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, pp. 796-809.

CCT time series : Time-Series Similarity Queries Employing a Feature-Based Approach; R. J. Alcock & Y. Manolopoulos (1999).

Courbes principales : *Principal curves*; T. Hastie & W. Stuetzle (1989). in Journal of the American Statistical Association, vol. 84, pp. 502-516. *Another look at principal curves and surfaces*; P. Delicado (2001). in Journal of Multivariate Analysis, vol. 77, pp. 84-116 (...etc).