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The SVD Algorithm

Let A be an m× n matrix. The Singular Value Decomposition (SVD) of A,

A = UΣV T ,

where U is m×m and orthogonal, V is n× n and orthogonal, and Σ is an m× n diagonal matrix
with nonnegative diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σp, p = min{m,n},

known as the singular values of A, is an extremely useful decomposition that yields much informa-
tion about A, including its range, null space, rank, and 2-norm condition number. We now discuss
a practical algorithm for computing the SVD of A, due to Golub and Kahan.

Let U and V have column partitions

U =
[
u1 · · · um

]
, V =

[
v1 · · · vn

]
.

From the relations
Avj = σjuj , ATuj = σjvj , j = 1, . . . , p,

it follows that
ATAvj = σ2jvj .

That is, the squares of the singular values are the eigenvalues of ATA, which is a symmetric matrix.
It follows that one approach to computing the SVD of A is to apply the symmetric QR algorithm

to ATA to obtain a decomposition ATA = V ΣTΣV T . Then, the relations Avj = σjuj , j = 1, . . . , p,
can be used in conjunction with the QR factorization with column pivoting to obtain U . However,
this approach is not the most practical, because of the expense and loss of information incurred
from computing ATA.

Instead, we can implicitly apply the symmetric QR algorithm to ATA. As the first step of the
symmetric QR algorithm is to use Householder reflections to reduce the matrix to tridiagonal form,
we can use Householder reflections to instead reduce A to upper bidiagonal form
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It follows that T = BTB is symmetric and tridiagonal.
We could then apply the symmetric QR algorithm directly to T , but, again, to avoid the loss of

information from computing T explicitly, we implicitly apply the QR algorithm to T by performing
the following steps during each iteration:

1. Determine the first Givens row rotation GT
1 that would be applied to T − µI, where µ is the

Wilkinson shift from the symmetric QR algorithm. This requires only computing the first
column of T , which has only two nonzero entries t11 = d21 and t21 = d1f1.

2. Apply G1 as a column rotation to columns 1 and 2 of B to obtain B1 = BG1. This introduces
an unwanted nonzero in the (2, 1) entry.

3. Apply a Givens row rotation H1 to rows 1 and 2 to zero the (2, 1) entry of B1, which yields
B2 = HT

1 BG1. Then, B2 has an unwanted nonzero in the (1, 3) entry.

4. Apply a Givens column rotation G2 to columns 2 and 3 of B2, which yields B3 = HT
1 BG1G2.

This introduces an unwanted zero in the (3, 2) entry.

5. Continue applying alternating row and column rotations to “chase” the unwanted nonzero
entry down the diagonal of B, until finally B is restored to upper bidiagonal form.

By the Implicit Q Theorem, since G1 is the Givens rotation that would be applied to the first
column of T , the column rotations that help restore upper bidiagonal form are essentially equal to
those that would be applied to T if the symmetric QR algorithm was being applied to T directly.
Therefore, the symmetric QR algorithm is being correctly applied, implicitly, to B.

To detect decoupling, we note that if any superdiagonal entry fi is small enough to be “declared”
equal to zero, then decoupling has been achieved, because the ith subdiagonal entry of T is equal
to difi, and therefore the ith subdiagonal entry of T must be zero as well. If a diagonal entry di
becomes zero, then decoupling can be achieved as follows:

• If di = 0, for i < n, then Givens row rotations applied to rows i and k, for k = i + 1, . . . , n,
can be used to zero the entire ith row. The SVD algorithm can then be applied separately
to B1:i,1:i and Bi+1:n,i+1:n.

• If dn = 0, then Givens column rotations applied to columns i and n, for i = n−1, n−2, . . . , 1,
can be used to zero the entire nth column. The SVD algorithm can then be applied to
B1:n−1,1:n−1.

In summary, if any diagonal or superdiagonal entry of B becomes zero, then the tridiagonal matrix
T = BTB is no longer unreduced and deflation is possible.

Eventually, sufficient decoupling is achieved so that B is reduced to a diagonal matrix Σ. All
Householder reflections that have pre-multiplied A, and all row rotations that have been applied
to B, can be accumulated to obtain U , and all Householder reflections that have post-multiplied
A, and all column rotations that have been applied to B, can be accumulated to obtain V .
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